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Abstract. In this paper we prove that the Torelli part of the symplecto-

morphism groups of the n-point (n ≤ 4) blow-ups of the projective plane is
trivial. Consequently, we determine the symplectic mapping class group. It is

generated by reflections on Kω−spherical class with zero ω area.
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1. Introduction

A symplectic manifold (X,ω) is an even dimensional manifold X with a closed,
nondegenerate two form ω. The symplectomorphism group of (X,ω), denoted by
Symp(X,ω), is the group of diffeomorphisms φ of M which preserve ω, and is given
the C∞-topology. Symp(X,ω) is an infinite dimensional Fréchet Lie group.

For a closed 4−dimensional symplectic manifold (X,ω), since Gromov’s work
[Gro85], the homotopy type of Symp(X,ω) has attracted much interest over the
past 30 years. For the special case of some monotone 4−manifolds, the (rational)
homotopy of Symp(X,ω) was fully computed in [Gro85, AM99, Eva11]. However,
for an arbitrary symplectic 4 manifold, the complication grows drastically: for
S2 × S2, see [Abr98, AM99, Anj02]; and [AP12] for other instances.

The goal of this note is modest: for some rational 4−manifolds, we compute
π0(Symp(X,ω)), which is the symplectic mapping class group (denoted as SMC for
short). In the cases we consider, the homological action of Symp(X,ω) is already
known in [LW11]. Therefore it suffices to describe π0(Symph(X,ω)), which is the
subgroup of Symp(X,ω) acting trivially on homology, namely, its Torelli part.
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Theorem 1.1. Symph(X,ω) is connected for X = CP 2#4CP 2 with arbitrary
symplectic form ω.

The cases S2×S2 and (CP 2#kCP 2) with k ≤ 3 are known before. Our approach
actually works in a uniform way for all k ≤ 4 (See discussions in remark 3.5). One
also note that Theorem 1.1 is not true in general for k ≥ 5, see Seidel’s famous
example in [Sei08].

Our strategy is based on Evans’ beautiful approach in [Eva11] by systematically
exploring the geometry of certain stable configuration of symplectic spheres (a
related approach first appeared in Abreu’s paper [Abr98]). It is summarized by the
following diagram:

(1)
Sympc(U) −−−−→ Stab1(C) −−−−→ Stab0(C) −−−−→ Stab(C) −−−−→ Symph(X)y y y

G(C) Symp(C) C0
Here C0 is the space of a full stable standard configuration of fixed homological
type. Every other term in diagram (1) is a group associated to C ∈ C0, and
U = X \ C. Now we give the definition of stable standard spherical configurations
and the groups will be discussed later in section 2.1.

Definition 1.2. Given a symplectic 4-manifold (X,ω), we call an ordered finite col-
lection of symplectic spheres {Ci, i = 1, ..., n} a spherical symplectic configuration,
or simply a configuration if

1. for any pair i, j with i 6= j, [Ci] 6= [Cj ] and [Ci] · [Cj ] = 0 or 1.
2. they are simultaneously J−holomorphic for some J ∈ Jω.
3. C =

⋃
Ci is connected.

We will often use C to denote the configuration. The homological type of C
refers to the set of homology classes {[Ci]}.

Further, a configuration is called

• standard if the components intersect ω-orthogonally at every intersection
point of the configuration. Denote by C0 the space of standard configurations
having the same homology type as C.
• stable if [Ci] · [Ci] ≥ −1 for each i.
• full if H2(X,C;R) = 0.

It is shown in [LW11] that for a rational manifold, the homological action of
Symp(X,ω) is generated by Lagrangian Dehn twists. Therefore, Theorem 1.1 im-
plies:

Corollary 1.3. For a rational manifold with Euler number up to 7, the SMC
is a finite group generated by Lagrangian Dehn twists. Moreover, a generating
set corresponds to a finite set of Kω−null spherical classes with zero ω−area. In
particular, SMC is trivial for generic choice of ω.

It is shown in [BLW12] that the following proposition holds:

Proposition 1.4. Suppose (X4, ω) is a symplectic rational manifold. Then Symph(X,ω)
acts transitively on the space of

• homologous Lagrangian spheres
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• homologous symplectic −2-spheres
• Z2-homologous Lagrangian RP 2’s and homologous symplectic −4-spheres if
b−2 (X) ≤ 8

Hence we also have the following corollary:

Corollary 1.5. For a rational manifold with Euler number up to 7, the space of
• homologous Lagrangian spheres,
• Z2- homologous Lagrangian RP 2,
• homologous −2 symplectic spheres,
• homologous −4 symplectic spheres,
is connected.

Acknowledgments: Our indebtedness to Jonathan Evan’s illuminating paper
[Eva11] is throughout and evident. We would like to thank Martin Pinsonnault for
sharing his insights on an upcoming project towards all rational homotopy groups of
Symp(CP 2#4CP 2, ω), and for his comments. We are also grateful to Robert Gompf
for useful discussions. We thank an anonymous referee for the careful reading and
many useful comments which greatly improved our exposition. T.-J. Li and W. Wu
are supported by NSF Focused Research Grants DMS-0244663, W.Wu is supported
by AMS-Simons travel funds.

2. Analyzing the diagram

We analyze the diagram (1) and derive a criterion for the connectedness of
Symph(X,ω) in Corollary 2.10.

2.1. Groups associated to a configuration. Let C be a configuration in X. We
first introduce the groups appearing in (1):

Subgroups of Symph(X,ω)
Recall that Symph(X,ω) is the group of symplectomorphisms of (X,ω) which

acts trivially on H∗(X,Z).
• Stab(C) ⊂ Symph(X,ω) is the subgroup of symplectomorphisms fixing C

setwise, but not necessarily pointwise.
• Stab0(C) ⊂ Stab(C) is the subgroup the group fixing C pointwise.
• Stab1(C) ⊂ Stab0(C) is subgroup fixing C pointwise and acting trivially on

the normal bundles of its components.

Sympc(U) for the complement U
Sympc(U) is the group of compactly supported symplectomorphisms of (U, ω|U ),

where U = X \C and the form ω|U is the inherited form on U from X. It is topolo-
gised in this way: let (U, ω) be a non-compact symplectic manifold and let K be the
set of compact subsets of U . For each K ∈ K let SympK(W ) denote the group of
symplectomorphisms of U supported in K, with the topology of C∞-convergence.
The group Sympc(U, ω) of compactly-supported symplectomorphisms of (U, ω) is
topologised as the direct limit of SympK(W ) under inclusions.

Symp(C) and G(C) for the configuration C
Given a configuration of embedded symplectic spheres C = C1 ∪ · · · ∪ Cn ⊂ X

in a 4-manifold, let I denote the set of intersection points among the components.
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Suppose that there is no triple intersection among components and that all inter-
sections are transverse. Let ki denote the cardinality of I ∩Ci, which is the number
of intersection of points on Ci.

The group Symp(C) of symplectomorphisms of C fixing the components of C is
the product

∏n
i=1 Symp(Ci, I ∩ Ci). Here Symp(Ci, I ∩ Ci) denotes the group of

symplectomorphisms of Ci fixing the intersection points I ∩ Ci. Since each Ci is a
2−sphere and Symp(S2) acts transitivity on N−tuples of distinct points in S2, we
can write Symp(Ci, I ∩ Ci) as Symp(S2, ki). Thus

(2) Symp(C) ∼=
n∏
i=1

Symp(S2, ki)

As shown in [Eva11] we have:

(3) Symp(S2, 1) ' S1; Symp(S2, 2) ' S1; Symp(S2, 3) ' ?;

where ' means homotopy equivalence. And when k = 1, 2, the S1 on the right can
be taken to be the loop of a Hamiltonian circle action fixing the k points.

The symplectic gauge group G(C) is the product
∏n
i=1 Gki(Ci). Here Gki(Ci)

denotes the group of symplectic gauge transformations of the symplectic normal
bundle to Ci ⊂ X which are equal to the identity at the ki intersection points.
Also shown in [Eva11]:

(4) G0(S2) ' S1; G1(S2) ' ?; Gk(S2) ' Zk−1, k > 1.

Since we assume the configuration is connected, each ki ≥ 1. Thus by (4), we have

(5) π0(G(C)) = ⊕ni=1π0(Gki(S2)) = ⊕ni=1Zki−1

It is useful to describe a canonical set of ki generators for Gki(Ci). For each in-
tersection point y ∈ I ∩ Ci, the evaluation map is the projection of the following
homotopy fibration

Gki(Ci)→ Gki−1(Ci)
evy→ SL(2,R),

where the fiber Gki−1(Ci) is the gauge group fixing the other k− 1 points except y.
Inductively using this we get the generators of Gki(Ci) marked by all ki intersection
points. And hence it induces a map Z = π1(SL(2,R))→ π0(Gki(Ci)). Let gCi

(y) ∈
π0(Gki(Ci)) denote the image of 1 ∈ Z.

2.2. Reduction to the connectedness of Stab(C). The aim of this subsection
is to show

Proposition 2.1. Symph(X,ω) is connected if there is a full, stable, standard
configuration C with connected Stab(C).

This is derived from the right end of diagram (1) for a full, stable, standard
configuration C. More explicitly, we consider the fibration:

(6) Stab(C)→ Symph(X,ω)→ C0
Recall that C0 is the space of standard configurations having the homology type

of C. We will show (1) is a homotopy fibration and C0 is connected.
We first review certain general facts regarding these configurations which are

well-known to experts. By [LW11], we have the following fact.
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Lemma 2.2. Let (M,ω) be a symplectic 4-manifold and C a stable configuration
∪iCi. Let d(Ci) be the non-negative integer given by [Ci] · [Ci] + c1(X,ω) · [Ci].
Then there is a path connected Baire subset TD of Jω ×

∏
iM

d(Ci) such that a pair

(J,Ω =
∏
i Ωi), where Ωi ∈ Md(Ci), lies in TD if and only if there is a unique

embedded J- holomorphic configuration having the same homological type as C with
the i-th component containing Ωi.

Lemma 2.3. Assume C is a stable, standard configuration. The space C0 of stan-
dard configurations having the homology type of C is path connected.

Proof. Consider C, the space of configurations as in Definition 1.2. By Lemma 2.2
we see that the space C is connected. Using a Gompf isotopy argument, it is shown
in [Eva11] that the inclusion ι : C0 → C is a weak homotopy equivalence. Therefore,
C0 is also connected.

�

With C being full, the following lemma holds:

Lemma 2.4. If the stable, standard configuration C is also full, then Symph(X,ω)
acts transitively on C0. In particular, (6) is a homotopy fibration.

Proof. From Lemma 2.3 any C1, C2 ∈ C0 are isotopic through standard configu-
rations. The property that the configurations are symplectically orthogonal
where they intersect, together with the vanishing of H2(X,C;R), allows us to
extend such an isotopy to a global homologically trivial symplectomorphism of X
(by Banyaga’s symplectic isotopy extension theorem, see [MS05], Theorem 3.19).
So we have shown that the action of Symph(X,ω) on the connected space C0 is
transitive by establishing the 1−dimensional homotopy lifting property of the map
Symph(X,ω)→ C0. By a finite dimensional version of this argument (or Theorem
A in [Pai60]), we conclude that (6) is a homotopy fibration. �

Proof of Proposition 2.1
Since (6) is a homotopy fibration by Lemma 2.4, we have the associated homo-

topy long exact sequence. Because of the connectedness of C0 as shown in Lemma
2.3, the connectedness of Stab(C) implies the connectedness of Symph(X,ω). There-
fore, we have 2.1 as the reduction of our problem.

2.3. Reduction to the surjectivity of ψ: π1(Symp(C)) → π0(Stab0(C)). To
investigate the connectedness of Stab(C), considering the action of Stab(C) on C
and the following portion of diagram 1 which appeared in [Eva11] and [AP12]:

(7) Stab0(C)→ Stab(C)→ Symp(C)

The following lemma already appeared in [Eva11] and was explained to the authors
by J. D. Evans1. We here include more details for readers’ convenience.

Lemma 2.5. This diagram (7) is a homotopy fibration when C is a simply-connected
standard configuration.

1Private communications.
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Proof. First we show Stab(C)→ Symp(C) is surjective.
Recall that at each intersection point between two different components {xij} =

Ci ∩ Cj , the two components are symplectically orthogonal to each other in a
Darboux chart containing xij . For convenience of exposition define the level of
components as follows: let C1 be the unique component of level 1, and the level-
k components are defined as those intersects components in level k − 1 but does
not belong to any lower levels. This is well-defined again because of the simply-
connectedness assumption.

An element in Symp(C) is the composition of Hamiltonian diffeomorphism φi on
each component Ci, because of the simply connectedness of sphere. We start with
endowing C1 with a Hamiltonian function f1 generating φ1. Let C2

i be curves on
level 2. Because C2

i intersects C1 ω-orthogonally, we can find a symplectic neigh-
borhood U1 of C1, identified as a neighborhood of zero section of the normal bundle,
so that U1 ∩Ci consists of finitely many fibers. Pull-back f1 by the projection π of
the normal bundle and multiply a cut-off function ρ(r), ρ(r) = 1, r ≤ ε� 1; ρ(r) =
0, r ≥ 2ε. Here r is the radius in the fiber direction. Denote by φ̄1 the symplecto-
morphism generated by this cut-off. Notice that φ̄1 creates an extra Hamiltonian
diffeomorphism εj on each component Cj of level 2, and we denote φ′j = φj ◦ ε−1j
for Cj belonging to level 2.

One proceeds by induction on the level k. Notice one could always choose a
Hamiltonian function fi on a component Ci on level k which generates φ′i with the
property that fi(xil) = 0. Here Cl is the component of level k − 1 intersecting
Ci. We emphasize this can be done because the component Cl on level k − 1
which intersects Ci is unique (and that the intersection is a single point) due to the
simply connectedness assumption, and we do not restrict the value on any other
intersections of Ci and components of level k + 1. Therefore we only fix the value
of fi at a single point.

One then again use the pull-back on the symplectic neighborhood and cut-off
along the fiber direction to get a Hamiltonian function Hi which generates a diffeo-
morphism φ̄i supported on the neighborhood of Ci. We note that d(π∗f1 ·ρ(r))|Fx

=
0 whenever f1(x) = 0, where Fx is the normal fiber over the point x ∈ C1. Hence
dHi|Cl

= 0 since fi(xil) = 0 as prescribed earlier, which means action of φ̄i on Cl is

trivial. Taking the composition φ of all these φ̄i
′
s, φ is supported on a neighborhood

of C and equals φi when restricted to Ci.
The transitivity of the action of Stab(C) on Symp(C) follows easily. For any two

maps φ1, φ2 ∈ Symp(C), φ2φ
−1
1 ∈ Symp(C). We can extend φ2φ

−1
1 to Stab(C).

Then this extended φ2φ
−1
1 maps φ1 to φ2.

Now symplectic isotopy theorem (or Theorem A in [Pai60]) for the surjective
map Stab(C)→ Symp(C) proves the diagram (7) is a fibration.

�

Now we can establish the connectedness of Stab(C) under the following assump-
tions:

Proposition 2.6. Let (X,ω) be a symplectic 4-manifold, and C a simply-connected,
full, stable, standard configuration. If each component of C has no more than 3
intersection points, then the surjectivity of the connecting map ψ: π1(Symp(C))→
π0(Stab0(C)) implies the connectedness of Stab(C).



THE SYMPLECTIC MAPPING CLASS GROUP OF CP 2#nCP 2 WITH n ≤ 4 7

Proof. Since we assume that each component of C has no more than 3 intersection
points, it follows from (3) and (2) that π0(Symp(C)) = 1.

By Lemma 2.5 we have the homotopy long exact sequence associated to (7),

· · · → π1(Symp(C))
ψ→ π0(Stab0(C))→ π0(Stab(C))→ π0(Symp(C))

Then the surjectivity of ψ implies that Stab(C) is connected.
�

2.4. Three types of configurations. Next we investigate when the map ψ:
π1(Symp(C)) → π0(Stab0(C)) is surjective. For this purpose we observe that an
element of Stab0(C) induces an automorphisms of the normal bundle of C. Thus
we further have the following homotopy fibration appeared in [Eva11] and [AP12]:

(8) Stab1(C)→ Stab0(C)→ G(C)

In particular, there is the associated map ι : π0(Stab0(C)) → π0(G)(C). Consider
the composition map

ψ̄ = ι ◦ ψ : π1(Symp(C))→ π0(Stab0(C))→ π0(G(C)).

Notice that π0(G(C)) inherits a group structure from G(C) and ψ̄ is a group homo-
morphism. As shown in [Eva11], ψ̄ can be computed explicitly.

When ki = 3, π1(Symp(S2, k)) is trivial by (3). When ki = 1, 2, Symp(Ci, I∩Ci)
is homotopic to the loop of a Hamiltonian circle action on Ci fixing the ki points.
Denote such a loop by (φi)t. Observe that (φi)t is a generator of π1(Symp(Ci, I ∩
Ci)) = Z. Recall that for each component Cj there is a canonical set of generators
{gCj (y), y ∈ I ∩ Cj} for Gkj (Cj), introduced at the end of 2.1. The following is
Lemma 4.1 in [Eva11]

Lemma 2.7. Suppose Ci is a component with ki = 1, 2. The image of [(φi)t] ∈
π1(Symp(Ci, I ∩ Ci)) under ψ̄ is described as follows.

• if ki = 1 and Cj is the only component intersecting Ci with {x} = Ci ∩Cj,
then (φi)2π is sent to

gCj
(x)

in the factor subgroup π0(Gkj (Cj)) of π0(G(C)).
• if ki = 2 and x ∈ Ci ∩ Cj, y ∈ Ci ∩ Cl, then (φi)2π is sent to

(gCj (x), gCl
(y))

in the factor subgroup π0(Gkj (Cj))× π0(Gkl(Cl)) of π0(G(C)).

Use Lemma 2.7 we will show that ψ̄ is surjective for the following configurations.

Definition 2.8. Introduce three types of configurations (see Figure 1 for examples).

• (type I) C =
⋃n

1 Ci is called a chain, or a type I configuration, if k1 = kn =
1 and kj = 2, 2 ≤ j ≤ n− 1.

• (type II) Suppose C =
⋃n

1 Ci is a chain. C ′ = C ∪ Cp is called a type

II configuration if the sphere Cp is attached to Cp at exactly one point for
some p with 2 ≤ p ≤ n− 1.
• (type III) Suppose C ′ = C ∪Cp is a type II configuration. C ′′ = C ′ ∪Cq is

called a type III configuration if the sphere Cq is attached to Cq at exactly
one point for some q with 2 ≤ q ≤ n− 1 and q 6= p.
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C1

C2

C2

C5 C3C4

II

C1

C2

C5 C3
C4

I

C1

C2

C2

C5 C3
C4

C4

III

Figure 1.

Lemma 2.9. ψ̄ is surjective for a type I or II configuration and an isomorphism
for a type III configuration.

Proof. We first prove the surjectivity for a type I configuration C =
⋃n

1 Ci. In this
case, there are n− 1 intersection points x1, ..., xn−1 in total with

I ∩ C1 = {x1}, I ∩ Cn = {xn−1}, I ∩ Ci = {xi−1, xi}, i = 2, ..., n.

Notice that π1(Symp(Ci, ki)) = Z for each i = 1, ..., n. Notice also that π0(Gki(Ci)) =
Z for each i for i = 2, ..., n− 1, and π0(Gk1(C1)) and π0(Gkn(Cn)) are trivial. Thus
the homomorphism ψ̄C associated to C is of the form Zn → Zn−2.

For each i = 1, ..., n, denote the generator (φi)t of π1(Symp(Ci, ki)) = Z by
rot(i). For each i = 2, ..., n − 1, denote by gi(i − 1) and gi(i) the generators
gCi(xi−1) and gCi(xi) of π0(G2(Ci)) = Z.

Then by Lemma 2.7 the homomorphism ψ̄C is described by

(9)

rot(1) → g2(1),

rot(2) → (0, g3(2)),

ψ̄C : rot(j) → (gj−1(j − 1), gj+1(j)), 3 ≤ j ≤ n− 2

rot(n− 1) → (gn−2(n− 2), 0)

rot(n) → gn−1(n− 1)

Choose the bases of π1(Symp(Ci)) and π0(G(C)) to be

{rot(1), · · · , rot(n)}

and

{g2(2), g3(3), g4(4), · · · , gn−1(n− 1)},
respectively. Notice that gi(i− 1) = ±gi(i), then by (9), ψ̄C is represented by the
following (n− 2)× n matrix if we drop the possible negative sign for each entry,

1 0 1
0 1 0 1
0 0 1 0 1 0

. . .
. . .

. . .

1 0 1 0 0
1 0 1 0

1 0 1
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Observe that the first n− 2 minor as a (n− 2)× (n− 2) is upper triangular matrix
whose determinant is ±1. This shows that ψ̄C is surjective.

For a type II configuration C ′ = C ∪Cp, let x̄p be the intersection of Cp and Cp.
Notice that π1(Symp(C ′)) = Zn as in the case of C, with the Z summand from
Cp replaced by a Z summand from Cp. Notice also that π0(G(C ′)) = Zn−1 with
the extra Z summand coming from the new intersection point x̄p in Cp. Denote by

rot(p̄) the generator of π1(Symp(Cp, x̄p)). Denote by g′p(p) the generator gCp
(x̄p)

of π0(G3(Cp)). By Lemma 2.7, the homomorphism ψ̄C′ is of the form Zn → Zn−1,
and it differs from ψ̄C as in (9) :

(10)
rot(p) = 0

rot(p̄)→ g′p(p)

It is not hard to see that ψ̄C′ is again surjective. We illustrate by the type II
configuration in Figure 1. With respect to the bases

{rot(1), rot(2̄), rot(3), rot(4), rot(5)} and {g2(2), g′2(2), g3(3), g4(4)},

ψ̄C′ is represented by the following 4 × 5 matrix (if we drop the possible negative
sign), 

1 0 1
0 1 0 0
0 0 1 0 0

0 1 1


For a type III configuration C ′′ = C ′ ∪ Cq = C ∪ Cp ∪ Cq, observe first that

π1(Symp(C ′′)) = Zn and π0(G(C ′) = Zn. By Lemma 2.7, we can describe ψ̄C′′ :
Zn → Zn similar to the case of the type II configuration C ′. Precisely, ψ̄C′′ differs
from ψ̄C in (9) as follows:

(11)

rot(p) = rot(q) = 0

rot(p̄)→ g′p(p)

rot(q̄)→ g′q(q)

It is easy to see that ψ̄C′′ is an isomorphism in this case. We illustrate by the type
III configuration in Figure 1. With respect to the bases

{rot(1), rot(2̄), rot(3), rot(4̄), rot(5)} and {g2(2), g′2(2), g3(3), g′4(4), g4(4)},

ψ̄C′′ is represented by the following square matrix (if we drop the possible negative
sign), 

1 0 1
0 1 0 0
0 0 1 0 0
0 0 0 1 0

0 0 1


�
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2.5. Criterion. Finally, we arrive at the following criterion for the connectedness
of Symph(X,ω).

Corollary 2.10. Suppose a stable, standard configuration C is type I, II or III,
and it is full. If Sympc(U) is connected, then Symph(X,ω) is connected.

Proof. By Lemma 5.2 in [Eva11], Sympc(U) is weakly homotopy equivalent to
Stab1(C). So by our assumption that Sympc(U) being connected, Stab1(C) is
also connected. Therefore the map ι : π0(Stab0(C))→ π0(G)(C) associated to the
homotopy fibration (8) is a group isomorphism. Now we have ψC = ψ̄C .

Since C is type I, II or III, by Lemma 2.9, ψC is surjective. Notice that any type
I, II, or III configuration is simply-connected. By the assumption of C being full,
we can apply Proposition 2.6 and Proposition 2.1 to conclude that Symph(X,ω) is
connected.

�

3. Proof in the case of CP 2#4CP 2

3.1. The configuration for CP 2#4CP 2. Let X = CP 2#4CP 2 and ω an arbi-
trary symplectic form on X. We consider a configuration C in [Eva11], consisting
of symplectic spheres in homology classes S12 = H −E1 −E2, S34 = H −E3 −E4,
E1, E2, E3 and E4. Here {H,Ei} is the standard basis of H2(X;Z) with positive
pairing with ω. In Figure 2 we label the spheres by their homology classes.

E1

E2

E3

E4

S12 S34

Figure 2.

To apply the criterion in Corollary 2.10, we need to check that we can always
find a configuration C of such a homology type, so that
• C is stable.
• C is a type I, II or III configuration.
• C is full.
• Sympc(U) is connected.

Existence of such a configuration is a direct consequence of Gromov-Witten
theory and the first three statements follows from definition. Note also that the
actual choice of configuration will not affect the last statement because Symph(X)
acts transitively on C0, which means U is well-defined up to symplectomorphism
for any choice of C ∈ C0.

It thus remains to prove the connectedness of Sympc(U). We will actually show
that Sympc(U) is weakly contractible in the next subsection.
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3.2. Contractibility of Sympc(U). Let us first recall the following result of Evans
(Theorem 1.6 in [Eva11]):

Theorem 3.1. If C∗ × C is equipped with the standard (product) symplectic form
ωstd then Sympc(C∗ × C) is weakly contractible.

This is relevant since Evans observed in section 4.2 in his thesis [Eva10] that,
if (ω, J0) is Kähler with ω monotone and C holomorphic, then (U, J0) has a finite
type Stein structure f with ω|U = −ddcf , and there is a biholomorphism Ψ from
(U, J0) to C∗ × C (In addition, Ψ satisfies Ψ∗ωstd = ω|U ). We will generalize and
prove this observation in non-monotone cases in Proposition 3.3.

Let us also recall the next result of Evans (Proposition 2.2 in [Eva11]):

Proposition 3.2. If (W,J0) is a complex manifold with two finite type Stein struc-
tures φ1 and φ2, then Sympc(W,−ddcφ1) and Sympc(W,−ddcφ2) are weakly ho-
motopy equivalent.

Now we complete our proof of the connectedness of Symph(CP 2#4CP 2, ω) for
an arbitrary ω by proving the following

Proposition 3.3. Sympc(U, ω|U ) is weakly contractible.

Proof. We first choose a specific configuration C convenient for our purpose (as
we explained in Section 3.1 this does not affect our result). According to [Li08]
Proposition 4.8, we can always pick an integrable complex structure J0 compatible
with ω, so that (X, J0) is biholomorphic to a generic blow up of 4 points on CP 2

(the genericity here means that no 3 points lies on the same line, and indeed this
can always be done for less than 9 point blow ups). For such a generic holomorphic
blow up, there is a unique smooth rational curve in each class in the homology
type of C. Thus we canonically obtain a configuration C associated to J0. Observe
that the complement U = X \ C is biholomorphic to C∗ × C. That is because the
configuration C is the total transformation of two lines blowing up at four points.
Removing C gives us a biholomorphism from (U, J0) to CP 2 with two lines removed,
which is C∗ × C.

Now we construct a Stein structure φ on (U, J0) with−ddcφ = ω|U , whenever ω is

a rational symplectic form on CP 2#4CP 2. Since (U, J0) is biholomorphic to C∗×C
equipped with the standard finite type Stein structure (Jstd, ωstd = −ddc|z|2), we
can then apply Proposition 3.2 and Theorem 3.1 in this case to conclude the weak
contractibility of Sympc(U, ω|U ).

So we assume that [ω] ∈ H2(X;Q). Up to rescaling, we can write PD([lω]) =
aH− b1E1− b2E2− b3E3− b4E4 with a, bi ∈ Z≥0. Further, we assume b1 ≥ b2, b3 ≥
b4. Since H − E1 − E3 is an exceptional class we also have ω(H − E1 − E3) > 0.
This means that a > b1 + b3, namely, 2a ≥ 2b1 + 2b3 + 2. Rewrite

PD([2lω]) = (2b1+1)(H−E1−E2)+E1+(2b1−2b2+1)E2+(2a−2b1−1)(H−E3−E4)

+(2a− 1− 2b1 − 2b3)E3 + (2a− 1− 2b1 − b4)E4.

Notice that the coefficients are all in Z>0. In this way we represent PD([2lω]) as
a positive integral combination of all elements in the set {H − E1 − E2, H − E3 −
E4, E1, E2, E3, E4}, which is the homology type of C.

Denote the symplectic sphere with homology class Ei in C by CEi
, and similarly

for the two remaining spheres. Notice that each sphere is a smooth divisor. Consider



12 JUN LI, TIAN-JUN LI, WEIWEI WU

the effective divisor

F = (2b1 + 1)CH−E1−E2
+ CE1

+ (2b1 − 2b2 + 1)CE2
+ (2a− 2b1 − 1)CH−E3−E4

+(2a− 1− 2b1 − 2b3)CE3 + (2a− 1− 2b1 − b4)CE4 .

There is a holomorphic line bundle L with a holomorphic section s whose zero
divisor is exactly F . Notice that

c1(L) = [F ] = [2lω].

By [GH94] section 1.2, we can take an Hermitian metric |·| and a compatible connec-
tion on L such that the curvature form is just 2lω. Moreover, for the holomorphic
section s, the function φ = −log|s|2 is plurisubharmonic on the complement U with
−d(dφ◦J0) = 2lω. Notice that F and C have the same support so the complement
of F is the same as U . Thus we have endowed (U, J0) with a finite type Stein
structure φ.

As argued above, this implies that Sympc(U, ω|U ) = Sympc(U, 2lω|U ) is weakly
contractible when [ω] ∈ H2(X,Q) by the biholomorphism from (U, J0) to (C∗ ×
C, Jstd).

Finally, suppose ω is not rational, but we assume ω(H) ∈ Q without loss of gener-
ality by rescaling. We take a base point ϕ0 ∈ Sympc(U, ω|U ), and a Sn(n ≥ 0) fam-
ily of symplectomorphisms determined by a based map ι : Sn → Sympc(U, ω

′|U ).
Denote the union of support of this Sn family by Vι, which is a compact subset of
U .

Note the following fact:

Claim 3.4. There exists an ω′ symplectic on X such that:

(1) [ω′] ∈ H2(X,Q),
(2) [ω′](Ei) ≥ [ω](Ei), [ω

′](H) = [ω](H)
(3) the configuration C is ω′− symplectic
(4) (X \ C,ω′) ↪→ (X \ C,ω) in such a way that the image contains Vι.

Proof. Recall that to blow up an embedded ball B in a symplectic manifold (M,ω),
one removes the ball and collapses the boundary by Hopf fibration which incurs an
exceptional divisor. The reverse of this procedure is a blowdown.

Now take Ei in the configuration C and blow them down to get a disjoint union
of balls Bi in the blown-down manifold, which is a symplectic CP 2 with line area
equal ω(H). One then enlarge Bi by a very small amount to B′i so that the sizes of
B′i become rational numbers. After the enlargement, blow up B′i. This produces a
symplectic form on X which clearly satisfies (1) and (2). (3) can be achieved as long
as the enlarged ball has boundary intersecting proper transformation of S12 and S34

on a big circle. This is always possible: perturb S12 and S34 slightly so that they
are symplectically orthogonal to Ei before blow-down. Then in a neigbhorhood of
the resulting balls Bi, one has a Darboux chart where Bi is the standard ball, while
the portion of S12 and S34 inside this chart is the x1−x2 plane. This is guaranteed
by symplectic neighborhood theorem near Ei. Hence the (3) is obtained when the
enlargement stays inside the Darboux chart. For more details one is referred to
[MW96].

To see (4), we note that from the above description, (X \ C,ω′) is symplecto-
morphic to the complement of

⋃
iB
′
i union two lines (the proper transforms of S12

and S34) in the symplectic CP 2 from blowing down. The same thus applies to
(X \ C,ω), while B′i are replaced by Bi ⊂ B′i. Therefore, the statement regarding
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embedding holds in (4). Since Vι is compact and embeds in (X \ C,ω), as long as
the amount of enlargement from Bi to B′i is small enough, the embedded image
contains Vι as claimed. �

Therefore we can find an isotopy in Sympc(U, ω
′|U ) ↪→ Sympc(U, ω|U ), from the

Sn family of maps to the base point ϕ0 by the proved case when ω is rational.
We emphasize in the above proof, the choice of ω′ depends on ι, but this is irrel-
evant for our purpose. This concludes that for arbitrary symplectic form ω on X,
Sympc(U, ω|U ) is weakly contractible and hence Symph(CP 2#4CP 2) is connected
for any symplectic form.

�

Remark 3.5. The approach we adopt in this note in fact provides a uniform way
to establish the connectedness of the Torelli part of SMC for all symplectic rational
4−manifolds with χ ≤ 7. This can be viewed as a continuation of the techniques
first introduced by Gromov in [Gro85] and further developed by many others in
[Abr98, AM99, LP04, Eva11, AP12] etc.

Here we just list the configurations for the 1,2,3-point blow up of CP 2 equipped
with an arbitrary symplectic form:

• CP 2#CP 2, {E1, H − E1(with a marked point)}.
• CP 2#2CP 2, {E1, E2, H − E1 − E2}.
• CP 2#3CP 2, {E1, E2, H − E1 − E2, H − E1 − E3, H − E2 − E3}.

The configurations are all of type I. Combined with our argument verbatim, one
can recover the connectedness of Symph(CP 2#nCP 2, ω), n ≤ 3. However, such a
result for these manifolds is not new, see [Abr98, AM99, LP04, Eva11].
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