THE SYMPLECTIC MAPPING CLASS GROUP OF $\mathbb{C} P^{2} \# n \overline{\mathbb{C} P^{2}}$ WITH $n \leq 4$

JUN LI, TIAN-JUN LI, WEIWEI WU

Abstract

In this paper we prove that the Torelli part of the symplectomorphism groups of the n-point $(n \leq 4)$ blow-ups of the projective plane is trivial. Consequently, we determine the symplectic mapping class group. It is generated by reflections on K_{ω}-spherical class with zero ω area.

Contents

1. Introduction 1
2. Analyzing the diagram 3
2.1. Groups associated to a configuration 3
2.2. Reduction to the connectedness of $\operatorname{Stab}(C)$ 4
2.3. Reduction to the surjectivity of $\psi: \pi_{1}(\operatorname{Symp}(C)) \rightarrow \pi_{0}\left(\operatorname{Stab}^{0}(C)\right)$ 5
2.4. Three types of configurations 7
2.5. Criterion 10
3. Proof in the case of $\mathbb{C} P^{2} \# 4 \overline{\mathbb{C} P^{2}}$ 10
3.1. The configuration for $\mathbb{C} P^{2} \# 4 \overline{\mathbb{C} P^{2}}$ 10
3.2. Contractibility of $\operatorname{Symp}_{c}(U)$ 11
References 13

1. Introduction

A symplectic manifold (X, ω) is an even dimensional manifold X with a closed, nondegenerate two form ω. The symplectomorphism group of (X, ω), denoted by $\operatorname{Symp}(X, \omega)$, is the group of diffeomorphisms ϕ of M which preserve ω, and is given the C^{∞}-topology. $\operatorname{Symp}(X, \omega)$ is an infinite dimensional Fréchet Lie group.

For a closed 4-dimensional symplectic manifold (X, ω), since Gromov's work [Gro85], the homotopy type of $\operatorname{Symp}(X, \omega)$ has attracted much interest over the past 30 years. For the special case of some monotone 4 -manifolds, the (rational) homotopy of $\operatorname{Symp}(X, \omega)$ was fully computed in [Gro85, AM99, Eva11]. However, for an arbitrary symplectic 4 manifold, the complication grows drastically: for $S^{2} \times S^{2}$, see [Abr98, AM99, Anj02]; and [AP12] for other instances.

The goal of this note is modest: for some rational 4 -manifolds, we compute $\pi_{0}(\operatorname{Symp}(X, \omega))$, which is the symplectic mapping class group (denoted as SMC for short). In the cases we consider, the homological action of $\operatorname{Symp}(X, \omega)$ is already known in [LW11]. Therefore it suffices to describe $\pi_{0}\left(\operatorname{Symp} p_{h}(X, \omega)\right)$, which is the subgroup of $\operatorname{Symp}(X, \omega)$ acting trivially on homology, namely, its Torelli part.

Theorem 1.1. $\operatorname{Symp}_{h}(X, \omega)$ is connected for $X=\mathbb{C} P^{2} \# 4 \overline{\mathbb{C} P^{2}}$ with arbitrary symplectic form ω.

The cases $S^{2} \times S^{2}$ and $\left(\mathbb{C} P^{2} \# k \overline{\mathbb{C} P^{2}}\right)$ with $k \leq 3$ are known before. Our approach actually works in a uniform way for all $k \leq 4$ (See discussions in remark 3.5). One also note that Theorem 1.1 is not true in general for $k \geq 5$, see Seidel's famous example in [Sei08].

Our strategy is based on Evans' beautiful approach in [Eva11] by systematically exploring the geometry of certain stable configuration of symplectic spheres (a related approach first appeared in Abreu's paper [Abr98]). It is summarized by the following diagram:

Here \mathcal{C}_{0} is the space of a full stable standard configuration of fixed homological type. Every other term in diagram (1) is a group associated to $C \in \mathcal{C}_{0}$, and $U=X \backslash C$. Now we give the definition of stable standard spherical configurations and the groups will be discussed later in section 2.1.

Definition 1.2. Given a symplectic 4-manifold (X, ω), we call an ordered finite collection of symplectic spheres $\left\{C_{i}, i=1, \ldots, n\right\}$ a spherical symplectic configuration, or simply a configuration if

1. for any pair i, j with $i \neq j,\left[C_{i}\right] \neq\left[C_{j}\right]$ and $\left[C_{i}\right] \cdot\left[C_{j}\right]=0$ or 1 .
2. they are simultaneously J-holomorphic for some $J \in \mathcal{J}_{\omega}$.
3. $C=\bigcup C_{i}$ is connected.

We will often use C to denote the configuration. The homological type of C refers to the set of homology classes $\left\{\left[C_{i}\right]\right\}$.

Further, a configuration is called

- standard if the components intersect ω-orthogonally at every intersection point of the configuration. Denote by \mathcal{C}_{0} the space of standard configurations having the same homology type as C.
- stable if $\left[C_{i}\right] \cdot\left[C_{i}\right] \geq-1$ for each i.
- full if $H^{2}(X, C ; \mathbb{R})=0$.

It is shown in [LW11] that for a rational manifold, the homological action of $\operatorname{Symp}(X, \omega)$ is generated by Lagrangian Dehn twists. Therefore, Theorem $1.1 \mathrm{im}-$ plies:

Corollary 1.3. For a rational manifold with Euler number up to 7, the SMC is a finite group generated by Lagrangian Dehn twists. Moreover, a generating set corresponds to a finite set of $K_{\omega}-$ null spherical classes with zero ω-area. In particular, SMC is trivial for generic choice of ω.

It is shown in [BLW12] that the following proposition holds:
Proposition 1.4. Suppose $\left(X^{4}, \omega\right)$ is a symplectic rational manifold. Then $\operatorname{Symp}_{h}(X, \omega)$ acts transitively on the space of

- homologous Lagrangian spheres
- homologous symplectic -2-spheres
- \mathbb{Z}_{2}-homologous Lagrangian $\mathbb{R} P^{2}$'s and homologous symplectic -4 -spheres if $b_{2}^{-}(X) \leq 8$

Hence we also have the following corollary:
Corollary 1.5. For a rational manifold with Euler number up to 7 , the space of

- homologous Lagrangian spheres,
- \mathbb{Z}_{2} - homologous Lagrangian $\mathbb{R} P^{2}$,
- homologous -2 symplectic spheres,
- homologous -4 symplectic spheres,
is connected.
Acknowledgments: Our indebtedness to Jonathan Evan's illuminating paper [Eva11] is throughout and evident. We would like to thank Martin Pinsonnault for sharing his insights on an upcoming project towards all rational homotopy groups of $\operatorname{Symp}\left(\mathbb{C} P^{2} \# 4 \overline{\mathbb{C} P^{2}}, \omega\right)$, and for his comments. We are also grateful to Robert Gompf for useful discussions. We thank an anonymous referee for the careful reading and many useful comments which greatly improved our exposition. T.-J. Li and W. Wu are supported by NSF Focused Research Grants DMS-0244663, W.Wu is supported by AMS-Simons travel funds.

2. Analyzing the diagram

We analyze the diagram (1) and derive a criterion for the connectedness of $\operatorname{Symp}_{h}(X, \omega)$ in Corollary 2.10.
2.1. Groups associated to a configuration. Let C be a configuration in X. We first introduce the groups appearing in (1):

Subgroups of $\operatorname{Symp}_{h}(X, \omega)$
Recall that $\operatorname{Symp}_{h}(X, \omega)$ is the group of symplectomorphisms of (X, ω) which acts trivially on $H_{*}(X, \mathbb{Z})$.

- $\operatorname{Stab}(C) \subset \operatorname{Symp}_{h}(X, \omega)$ is the subgroup of symplectomorphisms fixing C setwise, but not necessarily pointwise.
- $\operatorname{Stab}^{0}(C) \subset S t a b(C)$ is the subgroup the group fixing C pointwise.
- $S t a b^{1}(C) \subset S t a b^{0}(C)$ is subgroup fixing C pointwise and acting trivially on the normal bundles of its components.
$\operatorname{Symp}_{c}(U)$ for the complement U
$\operatorname{Symp}_{c}(U)$ is the group of compactly supported symplectomorphisms of $\left(U,\left.\omega\right|_{U}\right)$, where $U=X \backslash C$ and the form $\left.\omega\right|_{U}$ is the inherited form on U from X. It is topologised in this way: let (U, ω) be a non-compact symplectic manifold and let \mathcal{K} be the set of compact subsets of U. For each $K \in \mathcal{K}$ let $\operatorname{Symp}_{K}(W)$ denote the group of symplectomorphisms of U supported in K, with the topology of \mathcal{C}^{∞}-convergence. The group $\operatorname{Symp}_{c}(U, \omega)$ of compactly-supported symplectomorphisms of (U, ω) is topologised as the direct limit of $\operatorname{Symp}_{K}(W)$ under inclusions.

$\operatorname{Symp}(C)$ and $\mathcal{G}(C)$ for the configuration C

Given a configuration of embedded symplectic spheres $C=C_{1} \cup \cdots \cup C_{n} \subset X$ in a 4-manifold, let I denote the set of intersection points among the components.

Suppose that there is no triple intersection among components and that all intersections are transverse. Let k_{i} denote the cardinality of $I \cap C_{i}$, which is the number of intersection of points on C_{i}.

The group $\operatorname{Symp}(C)$ of symplectomorphisms of C fixing the components of C is the product $\prod_{i=1}^{n} \operatorname{Symp}\left(C_{i}, I \cap C_{i}\right)$. Here $\operatorname{Symp}\left(C_{i}, I \cap C_{i}\right)$ denotes the group of symplectomorphisms of C_{i} fixing the intersection points $I \cap C_{i}$. Since each C_{i} is a 2 -sphere and $\operatorname{Symp}\left(S^{2}\right)$ acts transitivity on N-tuples of distinct points in S^{2}, we can write $\operatorname{Symp}\left(C_{i}, I \cap C_{i}\right)$ as $\operatorname{Symp}\left(S^{2}, k_{i}\right)$. Thus

$$
\begin{equation*}
\operatorname{Symp}(C) \cong \prod_{i=1}^{n} \operatorname{Symp}\left(S^{2}, k_{i}\right) \tag{2}
\end{equation*}
$$

As shown in [Eva11] we have:

$$
\begin{equation*}
\operatorname{Symp}\left(S^{2}, 1\right) \simeq S^{1} ; \quad \operatorname{Symp}\left(S^{2}, 2\right) \simeq S^{1} ; \quad \operatorname{Symp}\left(S^{2}, 3\right) \simeq \star \tag{3}
\end{equation*}
$$

where \simeq means homotopy equivalence. And when $k=1,2$, the S^{1} on the right can be taken to be the loop of a Hamiltonian circle action fixing the k points.

The symplectic gauge group $\mathcal{G}(C)$ is the product $\prod_{i=1}^{n} \mathcal{G}_{k_{i}}\left(C_{i}\right)$. Here $\mathcal{G}_{k_{i}}\left(C_{i}\right)$ denotes the group of symplectic gauge transformations of the symplectic normal bundle to $C_{i} \subset X$ which are equal to the identity at the k_{i} intersection points. Also shown in [Eva11]:

$$
\begin{equation*}
\mathcal{G}_{0}\left(S^{2}\right) \simeq S^{1} ; \quad \mathcal{G}_{1}\left(S^{2}\right) \simeq \star ; \quad \mathcal{G}_{k}\left(S^{2}\right) \simeq \mathbb{Z}^{k-1}, k>1 \tag{4}
\end{equation*}
$$

Since we assume the configuration is connected, each $k_{i} \geq 1$. Thus by (4), we have

$$
\begin{equation*}
\pi_{0}(\mathcal{G}(C))=\oplus_{i=1}^{n} \pi_{0}\left(\mathcal{G}_{k_{i}}\left(S^{2}\right)\right)=\oplus_{i=1}^{n} \mathbb{Z}^{k_{i}-1} \tag{5}
\end{equation*}
$$

It is useful to describe a canonical set of k_{i} generators for $\mathcal{G}_{k_{i}}\left(C_{i}\right)$. For each intersection point $y \in I \cap C_{i}$, the evaluation map is the projection of the following homotopy fibration

$$
\mathcal{G}_{k_{i}}\left(C_{i}\right) \rightarrow \mathcal{G}_{k_{i}-1}\left(C_{i}\right) \xrightarrow{e v_{y}} S L(2, \mathbb{R})
$$

where the fiber $\mathcal{G}_{k_{i}-1}\left(C_{i}\right)$ is the gauge group fixing the other $k-1$ points except y. Inductively using this we get the generators of $\mathcal{G}_{k_{i}}\left(C_{i}\right)$ marked by all k_{i} intersection points. And hence it induces a map $\mathbb{Z}=\pi_{1}(S L(2, \mathbb{R})) \rightarrow \pi_{0}\left(\mathcal{G}_{k_{i}}\left(C_{i}\right)\right)$. Let $g_{C_{i}}(y) \in$ $\pi_{0}\left(\mathcal{G}_{k_{i}}\left(C_{i}\right)\right)$ denote the image of $1 \in \mathbb{Z}$.
2.2. Reduction to the connectedness of $\operatorname{Stab}(C)$. The aim of this subsection is to show

Proposition 2.1. $\operatorname{Symp}_{h}(X, \omega)$ is connected if there is a full, stable, standard configuration C with connected $\operatorname{Stab}(C)$.

This is derived from the right end of diagram (1) for a full, stable, standard configuration C. More explicitly, we consider the fibration:

$$
\begin{equation*}
\operatorname{Stab}(C) \rightarrow \operatorname{Symp}_{h}(X, \omega) \rightarrow \mathcal{C}_{0} \tag{6}
\end{equation*}
$$

Recall that \mathcal{C}_{0} is the space of standard configurations having the homology type of C. We will show (1) is a homotopy fibration and \mathcal{C}_{0} is connected.

We first review certain general facts regarding these configurations which are well-known to experts. By [LW11], we have the following fact.

Lemma 2.2. Let (M, ω) be a symplectic 4-manifold and C a stable configuration $\cup_{i} C_{i}$. Let $d\left(C_{i}\right)$ be the non-negative integer given by $\left[C_{i}\right] \cdot\left[C_{i}\right]+c_{1}(X, \omega) \cdot\left[C_{i}\right]$. Then there is a path connected Baire subset \mathcal{T}_{D} of $\mathcal{J}_{\omega} \times \prod_{i} M^{d\left(C_{i}\right)}$ such that a pair $\left(J, \Omega=\prod_{i} \Omega_{i}\right)$, where $\Omega_{i} \in M^{d\left(C_{i}\right)}$, lies in \mathcal{T}_{D} if and only if there is a unique embedded J - holomorphic configuration having the same homological type as C with the i-th component containing Ω_{i}.

Lemma 2.3. Assume C is a stable, standard configuration. The space \mathcal{C}_{0} of standard configurations having the homology type of C is path connected.

Proof. Consider \mathcal{C}, the space of configurations as in Definition 1.2. By Lemma 2.2 we see that the space \mathcal{C} is connected. Using a Gompf isotopy argument, it is shown in [Eva11] that the inclusion $\iota: \mathcal{C}_{0} \rightarrow \mathcal{C}$ is a weak homotopy equivalence. Therefore, \mathcal{C}_{0} is also connected.

With C being full, the following lemma holds:
Lemma 2.4. If the stable, standard configuration C is also full, then $\operatorname{Symp}_{h}(X, \omega)$ acts transitively on \mathcal{C}_{0}. In particular, (6) is a homotopy fibration.

Proof. From Lemma 2.3 any $C_{1}, C_{2} \in \mathcal{C}_{0}$ are isotopic through standard configurations. The property that the configurations are symplectically orthogonal where they intersect, together with the vanishing of $H^{2}(X, C ; \mathbb{R})$, allows us to extend such an isotopy to a global homologically trivial symplectomorphism of X (by Banyaga's symplectic isotopy extension theorem, see [MS05], Theorem 3.19). So we have shown that the action of $\operatorname{Symp}_{h}(X, \omega)$ on the connected space \mathcal{C}_{0} is transitive by establishing the 1 -dimensional homotopy lifting property of the map $\operatorname{Symp}_{h}(X, \omega) \rightarrow \mathcal{C}_{0}$. By a finite dimensional version of this argument (or Theorem A in [Pai60]), we conclude that (6) is a homotopy fibration.

Proof of Proposition 2.1

Since (6) is a homotopy fibration by Lemma 2.4, we have the associated homotopy long exact sequence. Because of the connectedness of \mathcal{C}_{0} as shown in Lemma 2.3 , the connectedness of $\operatorname{Stab}(C)$ implies the connectedness of $\operatorname{Symp}_{h}(X, \omega)$. Therefore, we have 2.1 as the reduction of our problem.
2.3. Reduction to the surjectivity of $\psi: \pi_{1}(\operatorname{Symp}(C)) \rightarrow \pi_{0}\left(\operatorname{Stab}^{0}(C)\right)$. To investigate the connectedness of $\operatorname{Stab}(C)$, considering the action of $\operatorname{Stab}(C)$ on C and the following portion of diagram 1 which appeared in [Eva11] and [AP12]:

$$
\begin{equation*}
\operatorname{Stab}^{0}(C) \rightarrow \operatorname{Stab}(C) \rightarrow \operatorname{Symp}(C) \tag{7}
\end{equation*}
$$

The following lemma already appeared in [Eva11] and was explained to the authors by J. D. Evans ${ }^{1}$. We here include more details for readers' convenience.

Lemma 2.5. This diagram (7) is a homotopy fibration when C is a simply-connected standard configuration.

[^0]Proof. First we show $\operatorname{Stab}(C) \rightarrow \operatorname{Symp}(C)$ is surjective.
Recall that at each intersection point between two different components $\left\{x_{i j}\right\}=$ $C_{i} \cap C_{j}$, the two components are symplectically orthogonal to each other in a Darboux chart containing $x_{i j}$. For convenience of exposition define the level of components as follows: let C_{1} be the unique component of level 1 , and the levelk components are defined as those intersects components in level $k-1$ but does not belong to any lower levels. This is well-defined again because of the simplyconnectedness assumption.

An element in $\operatorname{Symp}(C)$ is the composition of Hamiltonian diffeomorphism ϕ_{i} on each component C_{i}, because of the simply connectedness of sphere. We start with endowing C_{1} with a Hamiltonian function f_{1} generating ϕ_{1}. Let C_{i}^{2} be curves on level 2. Because C_{i}^{2} intersects $C_{1} \omega$-orthogonally, we can find a symplectic neighborhood U_{1} of C_{1}, identified as a neighborhood of zero section of the normal bundle, so that $U_{1} \cap C_{i}$ consists of finitely many fibers. Pull-back f_{1} by the projection π of the normal bundle and multiply a cut-off function $\rho(r), \rho(r)=1, r \leq \epsilon \ll 1 ; \rho(r)=$ $0, r \geq 2 \epsilon$. Here r is the radius in the fiber direction. Denote by $\bar{\phi}_{1}$ the symplectomorphism generated by this cut-off. Notice that $\bar{\phi}_{1}$ creates an extra Hamiltonian diffeomorphism ϵ_{j} on each component C_{j} of level 2, and we denote $\phi_{j}^{\prime}=\phi_{j} \circ \epsilon_{j}^{-1}$ for C_{j} belonging to level 2 .

One proceeds by induction on the level k. Notice one could always choose a Hamiltonian function f_{i} on a component C_{i} on level k which generates ϕ_{i}^{\prime} with the property that $f_{i}\left(x_{i l}\right)=0$. Here C_{l} is the component of level $k-1$ intersecting C_{i}. We emphasize this can be done because the component C_{l} on level $k-1$ which intersects C_{i} is unique (and that the intersection is a single point) due to the simply connectedness assumption, and we do not restrict the value on any other intersections of C_{i} and components of level $k+1$. Therefore we only fix the value of f_{i} at a single point.

One then again use the pull-back on the symplectic neighborhood and cut-off along the fiber direction to get a Hamiltonian function H_{i} which generates a diffeomorphism $\bar{\phi}_{i}$ supported on the neighborhood of C_{i}. We note that $\left.d\left(\pi^{*} f_{1} \cdot \rho(r)\right)\right|_{F_{x}}=$ 0 whenever $f_{1}(x)=0$, where F_{x} is the normal fiber over the point $x \in C_{1}$. Hence $\left.d H_{i}\right|_{C_{l}}=0$ since $f_{i}\left(x_{i l}\right)=0$ as prescribed earlier, which means action of $\bar{\phi}_{i}$ on C_{l} is trivial. Taking the composition ϕ of all these $\bar{\phi}_{i}{ }^{\prime} s, \phi$ is supported on a neighborhood of C and equals ϕ_{i} when restricted to C_{i}.

The transitivity of the action of $\operatorname{Stab}(C)$ on $\operatorname{Symp}(C)$ follows easily. For any two maps $\phi_{1}, \phi_{2} \in \operatorname{Symp}(C), \phi_{2} \phi_{1}^{-1} \in \operatorname{Symp}(C)$. We can extend $\phi_{2} \phi_{1}^{-1}$ to $\operatorname{Stab}(C)$. Then this extended $\phi_{2} \phi_{1}^{-1}$ maps ϕ_{1} to ϕ_{2}.

Now symplectic isotopy theorem (or Theorem A in [Pai60]) for the surjective map $\operatorname{Stab}(C) \rightarrow \operatorname{Symp}(C)$ proves the diagram (7) is a fibration.

Now we can establish the connectedness of $\operatorname{Stab}(C)$ under the following assumptions:

Proposition 2.6. Let (X, ω) be a symplectic 4-manifold, and C a simply-connected, full, stable, standard configuration. If each component of C has no more than 3 intersection points, then the surjectivity of the connecting map $\psi: \pi_{1}(\operatorname{Symp}(C)) \rightarrow$ $\pi_{0}\left(S t a b^{0}(C)\right)$ implies the connectedness of $\operatorname{Stab}(C)$.

Proof. Since we assume that each component of C has no more than 3 intersection points, it follows from (3) and (2) that $\pi_{0}(\operatorname{Symp}(C))=1$.

By Lemma 2.5 we have the homotopy long exact sequence associated to (7),

$$
\cdots \rightarrow \pi_{1}(\operatorname{Symp}(C)) \xrightarrow{\psi} \pi_{0}\left(\operatorname{Stab}^{0}(C)\right) \rightarrow \pi_{0}(\operatorname{Stab}(C)) \rightarrow \pi_{0}(\operatorname{Symp}(C))
$$

Then the surjectivity of ψ implies that $\operatorname{Stab}(C)$ is connected.
2.4. Three types of configurations. Next we investigate when the map ψ : $\pi_{1}(\operatorname{Symp}(C)) \rightarrow \pi_{0}\left(\operatorname{Stab}^{0}(C)\right)$ is surjective. For this purpose we observe that an element of $S t a b^{0}(C)$ induces an automorphisms of the normal bundle of C. Thus we further have the following homotopy fibration appeared in [Eva11] and [AP12]:

$$
\begin{equation*}
\operatorname{Stab}^{1}(C) \rightarrow \operatorname{Stab}^{0}(C) \rightarrow \mathcal{G}(C) \tag{8}
\end{equation*}
$$

In particular, there is the associated map $\iota: \pi_{0}\left(\operatorname{Stab}^{0}(C)\right) \rightarrow \pi_{0}(\mathcal{G})(C)$. Consider the composition map

$$
\bar{\psi}=\iota \circ \psi: \pi_{1}(\operatorname{Symp}(C)) \rightarrow \pi_{0}\left(\operatorname{Stab}^{0}(C)\right) \rightarrow \pi_{0}(\mathcal{G}(C)) .
$$

Notice that $\pi_{0}(\mathcal{G}(C))$ inherits a group structure from $\mathcal{G}(C)$ and $\bar{\psi}$ is a group homomorphism. As shown in [Eva11], $\bar{\psi}$ can be computed explicitly.

When $k_{i}=3, \pi_{1}\left(\operatorname{Symp}\left(S^{2}, k\right)\right)$ is trivial by (3). When $k_{i}=1,2, \operatorname{Symp}\left(C_{i}, I \cap C_{i}\right)$ is homotopic to the loop of a Hamiltonian circle action on C_{i} fixing the k_{i} points. Denote such a loop by $\left(\phi_{i}\right)_{t}$. Observe that $\left(\phi_{i}\right)_{t}$ is a generator of $\pi_{1}\left(\operatorname{Symp}\left(C_{i}, I \cap\right.\right.$ $\left.\left.C_{i}\right)\right)=\mathbb{Z}$. Recall that for each component C_{j} there is a canonical set of generators $\left\{g_{C_{j}}(y), y \in I \cap C_{j}\right\}$ for $\mathcal{G}_{k_{j}}\left(C_{j}\right)$, introduced at the end of 2.1. The following is Lemma 4.1 in [Eva11]

Lemma 2.7. Suppose C_{i} is a component with $k_{i}=1,2$. The image of $\left[\left(\phi_{i}\right)_{t}\right] \in$ $\pi_{1}\left(\operatorname{Symp}\left(C_{i}, I \cap C_{i}\right)\right)$ under $\bar{\psi}$ is described as follows.

- if $k_{i}=1$ and C_{j} is the only component intersecting C_{i} with $\{x\}=C_{i} \cap C_{j}$, then $\left(\phi_{i}\right)_{2 \pi}$ is sent to

$$
g_{C_{j}}(x)
$$

in the factor subgroup $\pi_{0}\left(\mathcal{G}_{k_{j}}\left(C_{j}\right)\right)$ of $\pi_{0}(\mathcal{G}(C))$.

- if $k_{i}=2$ and $x \in C_{i} \cap C_{j}, y \in C_{i} \cap C_{l}$, then $\left(\phi_{i}\right)_{2 \pi}$ is sent to

$$
\left(g_{C_{j}}(x), g_{C_{l}}(y)\right)
$$

in the factor subgroup $\pi_{0}\left(\mathcal{G}_{k_{j}}\left(C_{j}\right)\right) \times \pi_{0}\left(\mathcal{G}_{k_{l}}\left(C_{l}\right)\right)$ of $\pi_{0}(\mathcal{G}(C))$.
Use Lemma 2.7 we will show that $\bar{\psi}$ is surjective for the following configurations.
Definition 2.8. Introduce three types of configurations (see Figure 1 for examples).

- (type I) $C=\bigcup_{1}^{n} C_{i}$ is called a chain, or a type I configuration, if $k_{1}=k_{n}=$ 1 and $k_{j}=2,2 \leq j \leq n-1$.
- (type II) Suppose $C=\bigcup_{1}^{n} C_{i}$ is a chain. $C^{\prime}=C \cup \overline{C_{p}}$ is called a type II configuration if the sphere $\overline{C_{p}}$ is attached to C_{p} at exactly one point for some p with $2 \leq p \leq n-1$.
- (type III) Suppose $C^{\prime}=C \cup \overline{C_{p}}$ is a type II configuration. $C^{\prime \prime}=C^{\prime} \cup \overline{C_{q}}$ is called a type III configuration if the sphere $\overline{C_{q}}$ is attached to C_{q} at exactly one point for some q with $2 \leq q \leq n-1$ and $q \neq p$.

Figure 1.
Lemma 2.9. $\bar{\psi}$ is surjective for a type I or II configuration and an isomorphism for a type III configuration.
Proof. We first prove the surjectivity for a type I configuration $C=\bigcup_{1}^{n} C_{i}$. In this case, there are $n-1$ intersection points x_{1}, \ldots, x_{n-1} in total with

$$
I \cap C_{1}=\left\{x_{1}\right\}, \quad I \cap C_{n}=\left\{x_{n-1}\right\}, \quad I \cap C_{i}=\left\{x_{i-1}, x_{i}\right\}, i=2, \ldots, n
$$

Notice that $\pi_{1}\left(\operatorname{Symp}\left(C_{i}, k_{i}\right)\right)=\mathbb{Z}$ for each $i=1, \ldots, n$. Notice also that $\pi_{0}\left(\mathcal{G}_{k_{i}}\left(C_{i}\right)\right)=$ \mathbb{Z} for each i for $i=2, \ldots, n-1$, and $\pi_{0}\left(\mathcal{G}_{k_{1}}\left(C_{1}\right)\right)$ and $\pi_{0}\left(\mathcal{G}_{k_{n}}\left(C_{n}\right)\right)$ are trivial. Thus the homomorphism $\bar{\psi}_{C}$ associated to C is of the form $\mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n-2}$.

For each $i=1, \ldots, n$, denote the generator $\left(\phi_{i}\right)_{t}$ of $\pi_{1}\left(\operatorname{Symp}\left(C_{i}, k_{i}\right)\right)=\mathbb{Z}$ by $\operatorname{rot}(i)$. For each $i=2, \ldots, n-1$, denote by $g_{i}(i-1)$ and $g_{i}(i)$ the generators $g_{C_{i}}\left(x_{i-1}\right)$ and $g_{C_{i}}\left(x_{i}\right)$ of $\pi_{0}\left(\mathcal{G}_{2}\left(C_{i}\right)\right)=\mathbb{Z}$.

Then by Lemma 2.7 the homomorphism $\bar{\psi}_{C}$ is described by

$$
\begin{align*}
\operatorname{rot}(1) & \rightarrow g_{2}(1), \\
\operatorname{rot}(2) & \rightarrow\left(0, g_{3}(2)\right), \\
\bar{\psi}_{C}: & \operatorname{rot}(j) \tag{9}\\
& \rightarrow\left(g_{j-1}(j-1), g_{j+1}(j)\right), \quad 3 \leq j \leq n-2 \\
& \operatorname{rot}(n-1) \\
& \rightarrow\left(g_{n-2}(n-2), 0\right) \\
& \operatorname{rot}(n)
\end{align*} \rightarrow g_{n-1}(n-1) .
$$

Choose the bases of $\pi_{1}\left(\operatorname{Symp}\left(C_{i}\right)\right)$ and $\pi_{0}(\mathcal{G}(C))$ to be

$$
\{\operatorname{rot}(1), \cdots, \operatorname{rot}(n)\}
$$

and

$$
\left\{g_{2}(2), g_{3}(3), g_{4}(4), \cdots, g_{n-1}(n-1)\right\}
$$

respectively. Notice that $g_{i}(i-1)= \pm g_{i}(i)$, then by $(9), \bar{\psi}_{C}$ is represented by the following $(n-2) \times n$ matrix if we drop the possible negative sign for each entry,

$$
\left[\begin{array}{ccccccccc}
1 & 0 & 1 & & & & & & \\
0 & 1 & 0 & 1 & & & & & \\
0 & 0 & 1 & 0 & 1 & 0 & & & \\
& & & \ddots & \ddots & \ddots & & & \\
& & & & 1 & 0 & 1 & 0 & 0 \\
& & & & & 1 & 0 & 1 & 0 \\
& & & & & & 1 & 0 & 1
\end{array}\right]
$$

Observe that the first $n-2$ minor as a $(n-2) \times(n-2)$ is upper triangular matrix whose determinant is ± 1. This shows that $\bar{\psi}_{C}$ is surjective.

For a type II configuration $C^{\prime}=C \cup \overline{C_{p}}$, let \bar{x}_{p} be the intersection of C_{p} and $\overline{C_{p}}$. Notice that $\pi_{1}\left(\operatorname{Symp}\left(C^{\prime}\right)\right)=\mathbb{Z}^{n}$ as in the case of C, with the \mathbb{Z} summand from C_{p} replaced by a \mathbb{Z} summand from $\overline{C_{p}}$. Notice also that $\pi_{0}\left(\mathcal{G}\left(C^{\prime}\right)\right)=\mathbb{Z}^{n-1}$ with the extra \mathbb{Z} summand coming from the new intersection point \bar{x}_{p} in C_{p}. Denote by $\operatorname{rot}(\bar{p})$ the generator of $\pi_{1}\left(\operatorname{Symp}\left(\overline{C_{p}}, \bar{x}_{p}\right)\right)$. Denote by $g_{p}^{\prime}(p)$ the generator $g_{C_{p}}\left(\bar{x}_{p}\right)$ of $\pi_{0}\left(\mathcal{G}_{3}\left(C_{p}\right)\right)$. By Lemma 2.7, the homomorphism $\bar{\psi}_{C^{\prime}}$ is of the form $\mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n-1}$, and it differs from $\bar{\psi}_{C}$ as in (9) :

$$
\begin{align*}
& \operatorname{rot}(p)=0 \\
& \operatorname{rot}(\bar{p}) \rightarrow g_{p}^{\prime}(p) \tag{10}
\end{align*}
$$

It is not hard to see that $\bar{\psi}_{C^{\prime}}$ is again surjective. We illustrate by the type II configuration in Figure 1. With respect to the bases

$$
\{\operatorname{rot}(1), \operatorname{rot}(\overline{2}), \operatorname{rot}(3), \operatorname{rot}(4), \operatorname{rot}(5)\} \quad \text { and } \quad\left\{g_{2}(2), g_{2}^{\prime}(2), g_{3}(3), g_{4}(4)\right\}
$$

$\bar{\psi}_{C^{\prime}}$ is represented by the following 4×5 matrix (if we drop the possible negative sign),

$$
\left[\begin{array}{lllll}
1 & 0 & 1 & & \\
0 & 1 & 0 & 0 & \\
0 & 0 & 1 & 0 & 0 \\
& & 0 & 1 & 1
\end{array}\right]
$$

For a type III configuration $C^{\prime \prime}=C^{\prime} \cup \overline{C_{q}}=C \cup \overline{C_{p}} \cup \overline{C_{q}}$, observe first that $\pi_{1}\left(\operatorname{Symp}\left(C^{\prime \prime}\right)\right)=\mathbb{Z}^{n}$ and $\pi_{0}\left(\mathcal{G}\left(C^{\prime}\right)=\mathbb{Z}^{n}\right.$. By Lemma 2.7, we can describe $\bar{\psi}_{C^{\prime \prime}}$: $\mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ similar to the case of the type II configuration C^{\prime}. Precisely, $\bar{\psi}_{C^{\prime \prime}}$ differs from $\bar{\psi}_{C}$ in (9) as follows:

$$
\begin{align*}
& \operatorname{rot}(p)=\operatorname{rot}(q)=0 \\
& \operatorname{rot}(\bar{p}) \rightarrow g_{p}^{\prime}(p) \tag{11}\\
& \operatorname{rot}(\bar{q}) \rightarrow g_{q}^{\prime}(q)
\end{align*}
$$

It is easy to see that $\bar{\psi}_{C^{\prime \prime}}$ is an isomorphism in this case. We illustrate by the type III configuration in Figure 1. With respect to the bases

$$
\{\operatorname{rot}(1), \operatorname{rot}(\overline{2}), \operatorname{rot}(3), \operatorname{rot}(\overline{4}), \operatorname{rot}(5)\} \quad \text { and } \quad\left\{g_{2}(2), g_{2}^{\prime}(2), g_{3}(3), g_{4}^{\prime}(4), g_{4}(4)\right\}
$$

$\bar{\psi}_{C^{\prime \prime}}$ is represented by the following square matrix (if we drop the possible negative sign),

$$
\left[\begin{array}{lllll}
1 & 0 & 1 & & \\
0 & 1 & 0 & 0 & \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
& & 0 & 0 & 1
\end{array}\right]
$$

2.5. Criterion. Finally, we arrive at the following criterion for the connectedness of $\operatorname{Symp}_{h}(X, \omega)$.

Corollary 2.10. Suppose a stable, standard configuration C is type I, II or III, and it is full. If $\operatorname{Symp}_{c}(U)$ is connected, then $\operatorname{Symp}_{h}(X, \omega)$ is connected.

Proof. By Lemma 5.2 in [Eva11], $\operatorname{Symp}_{c}(U)$ is weakly homotopy equivalent to $\operatorname{Stab}^{1}(C)$. So by our assumption that $\operatorname{Symp}_{c}(U)$ being connected, $\operatorname{Stab}^{1}(C)$ is also connected. Therefore the map $\iota: \pi_{0}\left(\operatorname{Stab}^{0}(C)\right) \rightarrow \pi_{0}(\mathcal{G})(C)$ associated to the homotopy fibration (8) is a group isomorphism. Now we have $\psi_{C}=\bar{\psi}_{C}$.

Since C is type I, II or III, by Lemma 2.9, ψ_{C} is surjective. Notice that any type I, II, or III configuration is simply-connected. By the assumption of C being full, we can apply Proposition 2.6 and Proposition 2.1 to conclude that $\operatorname{Symp}_{h}(X, \omega)$ is connected.

3. Proof in the case of $\mathbb{C} P^{2} \# 4 \overline{\mathbb{C} P^{2}}$

3.1. The configuration for $\mathbb{C} P^{2} \# 4 \overline{\mathbb{C} P^{2}}$. Let $X=\mathbb{C} P^{2} \# 4 \overline{\mathbb{C} P^{2}}$ and ω an arbitrary symplectic form on X. We consider a configuration C in [Eva11], consisting of symplectic spheres in homology classes $S_{12}=H-E_{1}-E_{2}, S_{34}=H-E_{3}-E_{4}$, E_{1}, E_{2}, E_{3} and E_{4}. Here $\left\{H, E_{i}\right\}$ is the standard basis of $H_{2}(X ; \mathbb{Z})$ with positive pairing with ω. In Figure 2 we label the spheres by their homology classes.

Figure 2.

To apply the criterion in Corollary 2.10, we need to check that we can always find a configuration C of such a homology type, so that

- C is stable.
- C is a type I, II or III configuration.
- C is full.
- $\operatorname{Symp}_{c}(U)$ is connected.

Existence of such a configuration is a direct consequence of Gromov-Witten theory and the first three statements follows from definition. Note also that the actual choice of configuration will not affect the last statement because $\operatorname{Symp} p_{h}(X)$ acts transitively on \mathcal{C}_{0}, which means U is well-defined up to symplectomorphism for any choice of $C \in \mathcal{C}_{0}$.

It thus remains to prove the connectedness of $\operatorname{Symp}_{c}(U)$. We will actually show that $\operatorname{Symp}_{c}(U)$ is weakly contractible in the next subsection.
3.2. Contractibility of $\operatorname{Symp}_{c}(U)$. Let us first recall the following result of Evans (Theorem 1.6 in [Eva11]):

Theorem 3.1. If $\mathbb{C}^{*} \times \mathbb{C}$ is equipped with the standard (product) symplectic form $\omega_{\text {std }}$ then $\operatorname{Symp}_{c}\left(\mathbb{C}^{*} \times \mathbb{C}\right)$ is weakly contractible.

This is relevant since Evans observed in section 4.2 in his thesis [Eva10] that, if $\left(\omega, J_{0}\right)$ is Kähler with ω monotone and C holomorphic, then $\left(U, J_{0}\right)$ has a finite type Stein structure f with $\left.\omega\right|_{U}=-d d^{c} f$, and there is a biholomorphism Ψ from $\left(U, J_{0}\right)$ to $\mathbb{C}^{*} \times \mathbb{C}\left(\right.$ In addition, Ψ satisfies $\left.\Psi^{*} \omega_{s t d}=\left.\omega\right|_{U}\right)$. We will generalize and prove this observation in non-monotone cases in Proposition 3.3.

Let us also recall the next result of Evans (Proposition 2.2 in [Eva11]):
Proposition 3.2. If $\left(W, J_{0}\right)$ is a complex manifold with two finite type Stein structures ϕ_{1} and ϕ_{2}, then $\operatorname{Symp}_{c}\left(W,-d d^{c} \phi_{1}\right)$ and $\operatorname{Symp}_{c}\left(W,-d d^{c} \phi_{2}\right)$ are weakly homotopy equivalent.

Now we complete our proof of the connectedness of $\operatorname{Symp}_{h}\left(\mathbb{C} P^{2} \# 4 \overline{\mathbb{C} P^{2}}, \omega\right)$ for an arbitrary ω by proving the following

Proposition 3.3. $\operatorname{Symp}_{c}\left(U,\left.\omega\right|_{U}\right)$ is weakly contractible.
Proof. We first choose a specific configuration C convenient for our purpose (as we explained in Section 3.1 this does not affect our result). According to [Li08] Proposition 4.8, we can always pick an integrable complex structure J_{0} compatible with ω, so that $\left(X, J_{0}\right)$ is biholomorphic to a generic blow up of 4 points on $\mathbb{C} P^{2}$ (the genericity here means that no 3 points lies on the same line, and indeed this can always be done for less than 9 point blow ups). For such a generic holomorphic blow up, there is a unique smooth rational curve in each class in the homology type of C. Thus we canonically obtain a configuration C associated to J_{0}. Observe that the complement $U=X \backslash C$ is biholomorphic to $\mathbb{C}^{*} \times \mathbb{C}$. That is because the configuration C is the total transformation of two lines blowing up at four points. Removing C gives us a biholomorphism from $\left(U, J_{0}\right)$ to $\mathbb{C} P^{2}$ with two lines removed, which is $\mathbb{C}^{*} \times \mathbb{C}$.

Now we construct a Stein structure ϕ on $\left(U, J_{0}\right)$ with $-d d^{c} \phi=\left.\omega\right|_{U}$, whenever ω is a rational symplectic form on $\mathbb{C} P^{2} \# 4 \overline{\mathbb{C} P^{2}}$. Since $\left(U, J_{0}\right)$ is biholomorphic to $\mathbb{C}^{*} \times \mathbb{C}$ equipped with the standard finite type Stein structure $\left(J_{s t d}, \omega_{s t d}=-d d^{c}|z|^{2}\right)$, we can then apply Proposition 3.2 and Theorem 3.1 in this case to conclude the weak contractibility of $\operatorname{Symp}_{c}\left(U,\left.\omega\right|_{U}\right)$.

So we assume that $[\omega] \in H^{2}(X ; \mathbb{Q})$. Up to rescaling, we can write $P D([l \omega])=$ $a H-b_{1} E_{1}-b_{2} E_{2}-b_{3} E_{3}-b_{4} E_{4}$ with $a, b_{i} \in \mathbb{Z} \geq 0$. Further, we assume $b_{1} \geq b_{2}, b_{3} \geq$ b_{4}. Since $H-E_{1}-E_{3}$ is an exceptional class we also have $\omega\left(H-E_{1}-E_{3}\right)>0$. This means that $a>b_{1}+b_{3}$, namely, $2 a \geq 2 b_{1}+2 b_{3}+2$. Rewrite

$$
\begin{gathered}
P D([2 l \omega])=\left(2 b_{1}+1\right)\left(H-E_{1}-E_{2}\right)+E_{1}+\left(2 b_{1}-2 b_{2}+1\right) E_{2}+\left(2 a-2 b_{1}-1\right)\left(H-E_{3}-E_{4}\right) \\
+\left(2 a-1-2 b_{1}-2 b_{3}\right) E_{3}+\left(2 a-1-2 b_{1}-b_{4}\right) E_{4} .
\end{gathered}
$$

Notice that the coefficients are all in $\mathbb{Z}^{>0}$. In this way we represent $P D([2 l \omega])$ as a positive integral combination of all elements in the set $\left\{H-E_{1}-E_{2}, H-E_{3}-\right.$ $\left.E_{4}, E_{1}, E_{2}, E_{3}, E_{4}\right\}$, which is the homology type of C.

Denote the symplectic sphere with homology class E_{i} in C by $C_{E_{i}}$, and similarly for the two remaining spheres. Notice that each sphere is a smooth divisor. Consider
the effective divisor

$$
\begin{gathered}
F=\left(2 b_{1}+1\right) C_{H-E_{1}-E_{2}}+C_{E_{1}}+\left(2 b_{1}-2 b_{2}+1\right) C_{E_{2}}+\left(2 a-2 b_{1}-1\right) C_{H-E_{3}-E_{4}} \\
+\left(2 a-1-2 b_{1}-2 b_{3}\right) C_{E_{3}}+\left(2 a-1-2 b_{1}-b_{4}\right) C_{E_{4}}
\end{gathered}
$$

There is a holomorphic line bundle \mathcal{L} with a holomorphic section s whose zero divisor is exactly F. Notice that

$$
c_{1}(\mathcal{L})=[F]=[2 l \omega]
$$

By [GH94] section 1.2, we can take an Hermitian metric $|\cdot|$ and a compatible connection on \mathcal{L} such that the curvature form is just $2 l \omega$. Moreover, for the holomorphic section s, the function $\phi=-\log |s|^{2}$ is plurisubharmonic on the complement U with $-d\left(d \phi \circ J_{0}\right)=2 l \omega$. Notice that F and C have the same support so the complement of F is the same as U. Thus we have endowed $\left(U, J_{0}\right)$ with a finite type Stein structure ϕ.

As argued above, this implies that $\operatorname{Symp}_{c}\left(U,\left.\omega\right|_{U}\right)=\operatorname{Symp}_{c}\left(U,\left.2 l \omega\right|_{U}\right)$ is weakly contractible when $[\omega] \in H^{2}(X, \mathbb{Q})$ by the biholomorphism from $\left(U, J_{0}\right)$ to $\left(\mathcal{C}^{*} \times\right.$ $\left.\mathcal{C}, J_{s t d}\right)$.

Finally, suppose ω is not rational, but we assume $\omega(H) \in \mathbb{Q}$ without loss of generality by rescaling. We take a base point $\varphi_{0} \in \operatorname{Symp}_{c}\left(U,\left.\omega\right|_{U}\right)$, and a $S^{n}(n \geq 0)$ family of symplectomorphisms determined by a based map $\iota: S^{n} \rightarrow \operatorname{Symp}_{c}\left(U,\left.\omega^{\prime}\right|_{U}\right)$. Denote the union of support of this S^{n} family by V_{ι}, which is a compact subset of U.

Note the following fact:
Claim 3.4. There exists an ω^{\prime} symplectic on X such that:
(1) $\left[\omega^{\prime}\right] \in H^{2}(X, \mathbb{Q})$,
(2) $\left[\omega^{\prime}\right]\left(E_{i}\right) \geq[\omega]\left(E_{i}\right),\left[\omega^{\prime}\right](H)=[\omega](H)$
(3) the configuration C is $\omega^{\prime}-$ symplectic
(4) $\left(X \backslash C, \omega^{\prime}\right) \hookrightarrow(X \backslash C, \omega)$ in such a way that the image contains V_{ι}.

Proof. Recall that to blow up an embedded ball B in a symplectic manifold (M, ω), one removes the ball and collapses the boundary by Hopf fibration which incurs an exceptional divisor. The reverse of this procedure is a blowdown.

Now take E_{i} in the configuration C and blow them down to get a disjoint union of balls B_{i} in the blown-down manifold, which is a symplectic $\mathbb{C} P^{2}$ with line area equal $\omega(H)$. One then enlarge B_{i} by a very small amount to B_{i}^{\prime} so that the sizes of B_{i}^{\prime} become rational numbers. After the enlargement, blow up B_{i}^{\prime}. This produces a symplectic form on X which clearly satisfies (1) and (2). (3) can be achieved as long as the enlarged ball has boundary intersecting proper transformation of S_{12} and S_{34} on a big circle. This is always possible: perturb S_{12} and S_{34} slightly so that they are symplectically orthogonal to E_{i} before blow-down. Then in a neigbhorhood of the resulting balls B_{i}, one has a Darboux chart where B_{i} is the standard ball, while the portion of S_{12} and S_{34} inside this chart is the $x_{1}-x_{2}$ plane. This is guaranteed by symplectic neighborhood theorem near E_{i}. Hence the (3) is obtained when the enlargement stays inside the Darboux chart. For more details one is referred to [MW96].

To see (4), we note that from the above description, $\left(X \backslash C, \omega^{\prime}\right)$ is symplectomorphic to the complement of $\bigcup_{i} B_{i}^{\prime}$ union two lines (the proper transforms of S_{12} and S_{34}) in the symplectic $\mathbb{C} P^{2}$ from blowing down. The same thus applies to $(X \backslash C, \omega)$, while B_{i}^{\prime} are replaced by $B_{i} \subset B_{i}^{\prime}$. Therefore, the statement regarding
embedding holds in (4). Since V_{ι} is compact and embeds in $(X \backslash C, \omega)$, as long as the amount of enlargement from B_{i} to B_{i}^{\prime} is small enough, the embedded image contains V_{ι} as claimed.

Therefore we can find an isotopy in $\operatorname{Symp}_{c}\left(U,\left.\omega^{\prime}\right|_{U}\right) \hookrightarrow \operatorname{Symp}_{c}\left(U,\left.\omega\right|_{U}\right)$, from the S^{n} family of maps to the base point φ_{0} by the proved case when ω is rational. We emphasize in the above proof, the choice of ω^{\prime} depends on ι, but this is irrelevant for our purpose. This concludes that for arbitrary symplectic form ω on X, $\operatorname{Symp}_{c}\left(U,\left.\omega\right|_{U}\right)$ is weakly contractible and hence $\operatorname{Symp}_{h}\left(\mathbb{C} P^{2} \# 4 \overline{\mathbb{C} P^{2}}\right)$ is connected for any symplectic form.

Remark 3.5. The approach we adopt in this note in fact provides a uniform way to establish the connectedness of the Torelli part of SMC for all symplectic rational 4 -manifolds with $\chi \leq 7$. This can be viewed as a continuation of the techniques first introduced by Gromov in [Gro85] and further developed by many others in [Abr98, AM99, LP04, Eva11, AP12] etc.

Here we just list the configurations for the 1,2,3-point blow up of $\mathbb{C} P^{2}$ equipped with an arbitrary symplectic form:

- $\mathbb{C} P^{2} \# \overline{\mathbb{C} P^{2}},\left\{E_{1}, H-E_{1}\right.$ (with a marked point) $\}$.
- $\mathbb{C} P^{2} \# 2 \overline{\mathbb{C}} P^{2},\left\{E_{1}, E_{2}, H-E_{1}-E_{2}\right\}$.
- $\mathbb{C} P^{2} \# 3 \overline{\mathbb{C} P^{2}},\left\{E_{1}, E_{2}, H-E_{1}-E_{2}, H-E_{1}-E_{3}, H-E_{2}-E_{3}\right\}$.

The configurations are all of type I. Combined with our argument verbatim, one can recover the connectedness of $\operatorname{Symp}_{h}\left(\mathbb{C} P^{2} \# n \overline{\mathbb{C} P^{2}}, \omega\right), n \leq 3$. However, such a result for these manifolds is not new, see [Abr98, AM99, LP04, Eva11].

References

[Abr98] Miguel Abreu. Topology of symplectomorphism groups of $S^{2} \times S^{2}$. Inventiones Mathematicae, 131:1-23, 1998.
[AM99] Miguel Abreu, Dusa Mcduff. Topology of symplectomorphism groups of rational ruled surfaces. J. Amer. Math. Soc, 971-1009, 1999.
[Anj02] Sílvia Anjos. Homotopy type of symplectomorphism groups of $S^{2} \times S^{2}$. Geom. Topol., 195-218 (electronic), 2002.
[AP12] Sílvia Anjos, Martin Pinsonnault. The homotopy Lie algebra of symplectomorphism groups of 3-fold blow-ups of the projective plane. Math. Z, 275, no. 1-2, 245-292, 2013.
[BCi01] Paul Biran, Kai Cieliebak. Symplectic topology on subcritical manifolds. Comm. Math. Helv, 76:712-753, 2001.
[BLW12] Matthew Strom Borman, Tian-Jun Li, Weiwei Wu. Spherical Lagrangians via ball packings and symplectic cutting. Selecta Mathematica, 20, no. 1, 261-283, 2014.
[Eva10] Jonathan Evans. Symplectic topology of some Stein and rational surfaces. Ph.D thesis, University of Cambridge, 2010
[Eva11] Jonathan Evans. Symplectic mapping class groups of some Stein and rational surfaces. Journal of Symplectic Geometry, 9(1):45-82, 2011.
[GH94] Phillip Griffiths, Joseph Harris. Principles of Algebraic Geometry. Wiley Interscience, Wiley Classics Library, edition, 1994.
[Gom95] Robert Gompf. A new construction of symplectic manifolds. Annals of Mathematics, 142(3):527-595, 1995.
[Gro85] Misha Gromov. Pseudoholomorphic curves in symplectic manifolds. Inventiones Mathematicae, 82:307-347, 1985.
[Hin03] Richard Hind. Stein fillings of lens spaces. Communications in Contemporary Mathematics, 5:967-982, 2003.
[HW13] Richard Hind, Weiwei Wu. Symplectormophism groups of non-compact manifolds and space of Lagrangians J. Symplectic Geom., to appear, arXiv:1305.7291.
[Hir76] Morris Hirsch. Differential Topology, volume 33 of Graduate Texts in Mathematics. Springer, 1976.
[LP04] Francois Lalonde, Martin Pinsonnault. The topology of the space of symplectic balls in rational 4-manifolds. Duke Mathematical Journal, 122(2):347-397, 2004.
[Li08] Tian-jun Li. The space of Symplectic structure on closed 4-manifolds. Studies in AMS, Vol42, 259-277,2008
[LW11] Tian-Jun Li, Weiwei Wu. Lagrangian spheres, symplectic surface and the symplectic mapping class group. Geometry and Topology, 16(2):1121-1169, 2012.
[MS04] Dusa McDuff, Dietmar Salamon. J-holomorphic curves and symplectic topology. volume 52 of Colloquium Publications, American Mathematical Society, 2004.
[MS05] Dusa McDuff, Dietmar Salamon. Introduction to Symplectic Topology. Oxford Mathematical Monographs, second edition, 2005.
[MW96] McCarthy, John D.; Wolfson, Jon G. Double points and the proper transform in symplectic geometry.. Differential Geom. Appl. 6 (1996), no. 2, 10107.
[Pai60] Richard S. Palais. On the local triviality of the restriction map for embeddings. Comm. Math. Helv. 34 (1960), 306-312.
[Ruan93] Yongbin Ruan. Symplectic topology and extremal rays. GAFA 3 (4), pp 395-430,1993.
[Sei08] Paul Seidel. Lectures on four-dimensional Dehn twists. In Symplectic 4-Manifolds and Algebraic Surfaces. volume 1938 of Lecture Notes in Mathematics, 231-268. Springer, 2008.
[SS06] Paul Seidel, Ivan Smith. The symplectic topology of Ramanujam's surface. In Symplectic 4-Manifolds and Algebraic Surfaces. volume 1938 of Comm. Math. Helv, 80, no.4:859881, 2006.

School of Mathematics, University of Minnesota, Minneapolis, MN 55455
E-mail address: lixx1727@umn.edu
School of Mathematics, University of Minnesota, Minneapolis, MN 55455
E-mail address: tjli@math.umn.edu
Department of Mathematics, Michigan State University, East Lansing, MI
E-mail address: weiwei@math.msu.edu

[^0]: ${ }^{1}$ Private communications.

